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Abstract

We perform a mixed coarse-graining approach in a normal mode analysis of protein motions, which enables the modeling of a protein’s

native conformation with different regions having low and high resolution. As a result, the dynamics of the interesting functional parts within

a supramolecular assemblage can be analyzed at high resolution, while the remainder of the structure is represented at poorer resolution, thus

keeping the total number of nodes in the system sufficiently low for computational tractability. Our results indicate that the vibrational

dynamics of specific components in a large multi-subunit protein are best described by retaining all the components of the structure, whether

at higher or lower resolution. It is also shown that similar frequency distributions are obtained for different proteins and at different levels of

coarse-graining, at the lower end of the spectrum, where the most significant slowest motions occur.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Biological functions of proteins are controlled by their

cooperative motions, typically involving large domains of

the structure. The structural dynamics of proteins are most

commonly studied by molecular dynamics (MD) simu-

lations and normal mode analyses (NMA) using fully-

atomistic, empirical potentials [1–3]. The basic approach in

these methods is to focus on the low frequency/ large

amplitude modes that are expected to be relevant to

function. However, these atomistic techniques become

computationally inefficient, and even inadequate, for the

largest systems. On the other hand, computational studies on

large biological ‘supramolecular assemblages’ [4], com-

posed of multiple macromolecular units such as the

ribosome, are recently becoming of great interest, due to

the growing numbers of large structures available from X-

ray crystallography and cryoelectron microscopy (EM). For

these reasons, coarse-grained protein models and simplified

force fields have emerged as powerful, efficient tools to

describe the molecular motions of large proteins [5–10].

The fluctuation dynamics of proteins can be effectively

described by a coarse-grained normal mode analysis, using

the elastic network model. In this model, the nodes of the

network are usually taken as the a-carbon sites of the

residues and the linkers are harmonic springs between

sufficiently close residue pairs. This model is named the

Gaussian network model (GNM) in the scalar version, i.e., if

the fluctuations are assumed to be isotropic with no

directional preferences [5]. The studies have shown that

GNM gives results in excellent agreement with X-ray

crystallographic Debye–Waller factors [5,6,11,12], H/D

exchange free data [13] and the order parameters from

NMR-relaxation measurements [14]. However, in reality, it

is known that the residue fluctuations are not in general

isotropic [15]. This anisotropy can have a great importance

in the biological function of the protein. An extension of the

GNM, called the anisotropic network model (ANM),
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incorporates the anisotropic effects on fluctuation dynamics

[10], yielding the 3-dimensional directions of the motion.

The large-scale collective motions obtained from elastic

network models are closely related to those extracted from

atomistic molecular dynamics studies [16], which lends

support to the effectiveness of these coarse-grained models

in the analysis of the structure–function relationship of

proteins and their complexes.

So far single-node-per-residue representation of the

folded protein structure has been commonly used in elastic

network models, providing satisfactory results in terms of

collective dynamics. Recent ANM studies have indicated

that the low-frequency, domain motions can still be

obtained with reasonable accuracy for more coarsely

grained systems, wherein a single node can represent 2 up

to 40 residues [17,18]. Extreme levels of coarse-graining

actually reduce the computational time by more than two

orders of magnitude thereby making the analysis of large

systems feasible. Moreover, by using elastic network

models, the vibrational dynamics of proteins can be

obtained by reproducing the density distribution of the

low-resolution protein structures obtained from EM [19,20]

or the overall shape of the molecule on a regular lattice [21].

In this study, we introduce a mixed coarse-graining

approach to elastic network model, where the ‘interesting’

or functional parts of the structure are modeled at a higher

resolution than the remainder of the structure, which is

represented at lower resolution, in less detail. It will be

shown that the collective dynamics of proteins can still be

extracted with reasonable accuracy using the mixed-

resolution model. As a result, the number of interaction

sites can be kept at a reasonable level, so that the normal

mode analysis can still be performed with high compu-

tational efficiency for large systems. By using such a model,

it is possible to focus on the details of interacting interfaces

between subunits with ligands.

2. Materials and method

2.1. Proteins

Two relatively large proteins are chosen in this study, as

an extension of an earlier work [18], namely hemagglutinin

(HA) and b-galactosidase (GAL) with the respective Protein

Data Bank [22] file names 2HMG and 1DP0. Influenza virus

hemagglutinin (HA) is an integral membrane glycoprotein.

The X-ray structure of HA has been determined by Wiley

and co-workers at a resolution of 3 Å [23,24]. HA is a

cylindrically shaped homo-trimer, comprising 1509 resi-

dues in total. Each monomer is composed of two separate

chains, HA1 (residues 1–328) and HA2 (329–503) that are

linked by two disulfide bridges. The three monomers are

assembled into a central coiled coil that forms the stem-like

domain, while the three globular heads contain the receptor

binding sites. The X-ray structure of Escherichia coli b-

galactocidase (GAL) has been determined by Matthews and

co-workers [25] at 1.7 Å resolution. GAL is a tetramer

having four identical subunits, with each monomer having

1023 residues. Its approximate dimensions are

175 Å £ 135 Å £ 90 Å. The biological function of this

enzyme is to hydrolyze lactose and other b-galactosides

into monosaccharides.

2.2. Elastic network model

Elastic network models are constructed based on the

folded structure of proteins that presumably approximates

the minimum energy conformation, i.e. the native state. In

the original model, each residue is represented by a coarse-

grained node located at its a-carbon position [5,10]. Then

the close neighboring residues in the three-dimensional

(3D) structure are connected by harmonic springs.

Explicitly, the total potential energy for a system of N

residues is a summation over all harmonic interactions of

ði; jÞ pairs that fall within the cutoff distance of rc:

V ¼ ðg=2Þ
X

i

X
j

hðrc 2 RijÞðDRj 2 DRiÞ
2 ð1Þ

Here Ri and DRi are, respectively, the position and

fluctuation vectors of node i ð1 # i # NÞ: Rij is the distance

between nodes i and j; and hðxÞ is the Heaviside step

function [hðxÞ ¼ 1 if x $ 0; and zero otherwise]. The only

adjustable parameter in this model is the force constant, g;

which is taken to be identical for all bonded and non-bonded

interactions, as was originally done in Tirion’s work [26].

In the following, the residue masses will be taken into

account, which were considered identical (equal to one) in

earlier elastic network calculations. Our formulation is

based on the classical normal mode analysis as applied to

proteins [27–29].

For the elastic network model, the mass-weighted

fluctuations can be defined as qk ¼
ffiffiffi
mi

p
Dxi; qkþ1 ¼

ffiffiffi
mi

p

Dyi; and qkþ2 ¼
ffiffiffi
mi

p
Dzi; where Dxi; Dyi; and Dzi are the

Cartesian coordinates of DRi: Therefore, q is a 3N

dimensional vector of fluctuations. The potential energy

can be approximated in quadratic form around the minimum

energy conformation of the protein indicated by q ¼ 0:

V ¼
1

2

X3N

i¼1

X3N

j¼1

›2V

›qi ›qj

�����
q¼0

qiqj ð2Þ

The Lagrangian ðLÞ; which is the kinetic energy minus the

potential energy, can be written in compact form.

L ¼
1

2
_qT _q 2

1

2
qTFq ð3Þ

Here, F ð3N £ 3NÞ is the Hessian, or force constant matrix,

whose elements are the second derivatives of the potential

energy with respect to the mass-weighted coordinates in Eq.

(2). T stands for transpose and dot indicates derivative with

respect to time.

O. Kurkcuoglu et al. / Polymer 45 (2004) 649–657650



The real-symmetric matrix F can be diagonalized to

obtain the canonical form,

STFS ¼ l ð4Þ

where l ð3N £ 3NÞ is a diagonal matrix with the diagonal

elements corresponding to the eigenvalues l1 to l3N : S
ð3N £ 3NÞ is an orthogonal matrix with STS ¼ I (I being the

identity matrix). The columns of S are the normalized

eigenvectors.

This orthogonal transformation defines the normal

coordinates for the elastic network, given by the 3N

dimensional vector Q.

Q ¼ STq ð5Þ

Lagrange’s equation of motion in canonical form is:

d

dt

›L

› _Qi

� �
¼

›L

›Qi

� �
ð6Þ

As a result, the dynamics of the 3N normal coordinates are

obtained as

Qi ¼ Ai cosðvit þ 1iÞ ð7Þ

Here each normal mode has a frequency of vi ¼ ðliÞ
1=2 with

phase 1i and amplitude Ai determined by the initial

conditions. It should be noted that six normal modes

describing rotational and translational motion of the

molecule have zero frequencies, with the remaining ð3N 2

6Þ being the internal degrees of freedom.

According to equipartition law, each normal mode has a

time-average potential energy of ð1=2ÞkBT relative to the

minimum value.

kQ2
i l ¼

kBT

v2
i

ð8Þ

Here kB is the Boltzmann constant and T is the absolute

temperature. In terms of the mass-weighted coordinates the

mean square (ms) fluctuations are

kqi
2l ¼ kBT

X3N26

k¼1

Sik

vk

� �
2 ð9Þ

As a result, the ms fluctuations of each residue, kDR2
i l; can

also be calculated, which are usually comparable to the

experimental temperature factors ðBiÞ according to the

relationship:

Bi ¼ ð8p2
=3ÞkDR2

i l ð10Þ

The only unknown parameter g in the elastic network model

is implicit in vk; i.e. v2
k ¼ gv0 2

k : The value of g is

determined so as to match the experimental and theoretical

ms fluctuations averaged over all residues.

2.3. Mixed coarse-graining procedure of the elastic network

model

The mixed-coarse graining procedure is composed of

three main parts: (i) uniform coarse-graining of the protein

structure at a series of hierarchical levels by retaining N;

ðN=2Þ; ðN=5Þ; ðN=10Þ; ðN=20Þ and ðN=40Þ residues of the

original X-ray structure; (ii) establishing the relation

between the force constant and the cutoff radius for these

different levels of coarse-graining; and (iii) coarse-graining

the ‘interesting’ parts at a higher resolution and the rest of

the structure at a lower resolution.

In this study, each chain or monomer of a multi-subunit

protein is coarse-grained separately along its chain back-

bone, starting with the first residue. For example, HA is

composed of three HA1 and three HA2 chains, which are

separately transformed into linear chains of coarse-grained

nodes, each containing the reduced number of residues,

taken in a sequentially linear way.

Cutoff radius as a function of segment length. The

uniformly coarse-grained structure can be viewed as a

collection of s coarse-grained segments, each containing n

residues. Thus the total number of residues in the original

structure is N ¼ sn: This closely resembles the way in which

polymer chains have been coarse-grained to construct

equivalent chain models for simpler conformational models

of random coils. One example of this is the Kuhn statistical

link similarly made up of n units of the chain [30].

In earlier work [18], the relationship between the radius

of gyration ðRGÞ and the segment length was shown to be

very similar for three large proteins up to n ¼ 40; with the

functional form given by

RG ¼ anb ð11Þ

And the parameters for 1 , n # 40 were found to be a ¼

1:778 and b ¼ 0:595 from a fit to the average behavior for

three proteins, namely HA, GAL and xanthine dehydro-

genase (XDH) [18]. Due to the necessarily longer

interaction ranges of the renormalized sites, the cutoff

radius was adjusted as the sum of the renormalized radius of

each site plus the invariant contact distance R0 between the

sites,

rc ¼ 2RG þ R0 ð12Þ

where RG is calculated according to Eq. (11). R0 was

determined as 13 Å in earlier work for n ¼ 1; which is also

adopted in this work for consistency [10]. We will also

adopt the functional form and parameters given by Eqs. (11)

and (12) for the determination of rc for n $ 2:

Fluctuations of coarse-grained nodes. We have to

determine the effective temperature factor Bi for a group

of residues in order to calculate the effective force constant

for different segment lengths. The fluctuation of the center

of mass of a group of n residues that have different

molecular weights and fluctuations in Cartesian coordinates
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(not in mass-weighted coordinates) can be defined as

DRcm ¼
m1DR1 þ · · · þ mnDRnXn

i¼1

mi

ð13Þ

Neglecting the cross-correlations terms between residue

fluctuations, it can be shown that

kDR2
cmln ¼

Xn

i¼1

m2
i kDR2

i l

Xn

i¼1

mi

 !2
ð14Þ

where summations are performed over the n residues in the

collective unit. In a similar fashion, based on Bcm;n ¼

ð8p2=3ÞkDR2
cmln; the temperature factor for a node com-

posed of n residues can be approximated as

Bcm;n ¼

Xn

i¼1

m2
i Bi

Xn

i¼1

mi

 !2
ð15Þ

If all residue masses were identical, we would similarly

obtain

Bcm;n ¼ ð1=n2Þ
Xn

i¼1

Bi

Force constant as a function of segment length. After

fixing the cutoff radius for the segment length n $ 2; the

effective force constant for the renormalized nodes can be

adjusted by maximizing the match between the average

values of the ms fluctuations predicted by theory and

derived for coarse-grained nodes using Eq. (15) and

experimental Bi: As the level of coarse-graining increases,

the distance between the nodes and the mass of the nodes

increases, and as a result the renormalized force constants

become stronger, which will be discussed in the next

section.

3. Results and discussion

3.1. Uniform coarse-graining

Force constants. In this study, each coarse-grained node

is placed at the center of mass of its constituent

residues/atoms. In addition, the residue center of mass is

calculated considering all atoms except hydrogens. From a

comparison of experimental and theoretical fluctuations, the

force constant is determined for different segment lengths

ðnÞ: Fig. 1 exhibits the relation between the force constant

and the cutoff distance, i.e. the size of coarse-grained nodes.

HA and GAL exhibit almost the same behavior up to n ¼

20:

Frequency distribution. The density of the vibrational

frequencies, gðvÞ; is defined as the number of modes per

frequency range divided by the total number of modes. In

Fig. 2(a), the frequency distributions of HA and GAL are

shown for n ¼ 1; which are very similar particularly in the

low frequency range. This is consistent with previous

findings on the behavior of smaller proteins (with at most

375 residues) that fall under a universal curve [31]. Fig. 2(b)

and (c) show gðvÞ distributions at different levels of coarse-

graining for HA and GAL, respectively. The distributions

look quite similar, although there is some scatter at the high

coarse-graining levels of HA, which is a smaller protein

compared to GAL. In Fig. 2(d), GðvÞ; which is the

cumulative density of modes up to frequency v; is plotted

as a function of v for the low-frequency region (comprising

about 3–4% of the total number of modes). Again the two

curves for HA and GAL are very similar at n ¼ 1: On the

logarithmic curve, an exponent k ø 2:2 is found for GðvÞ ,
vk; which is close to the value of 2 found from atomistic

normal mode analysis on smaller proteins [31]. Previous

elastic network model results reported on smaller proteins

(containing up to 164 residues) indicate k , 1:63 [11]. In

this work, the lowest frequency is found as 1 cm21 for HA

(0.7 cm21 for GAL) at n ¼ 1; which depends on the value of

g extracted using Eqs (9) and (10).

3.2. Mixed coarse-graining

In the mixed coarse-graining procedure, the interesting

parts of the system are analyzed at higher resolution,

whereas the remaining parts are modeled at lower

resolution. Higher resolution corresponds to smaller values

of segment length ðnÞ; cutoff radius and force constant.

Since segments with at least two different lengths (n1 and

n2) exist in the mixed system, the cutoff distance

determining the range of interaction between node types 1

Fig. 1. Relationship between the force constant and the cutoff distance for

the two proteins hemagglutinin (HA) and b-galactosidase (GAL) for the

elastic network models.
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and 2 is adjusted as:

rc;12 ¼
r3

c;1 þ r3
c;2

2

 !1=3

ð16Þ

Here the different size nodes are considered to have the

same density, with the masses of nodes being proportional

to the volume of spherical residues. As a result, the force

constant acting between node types 1 and 2 can be

determined from Fig. 1, which corresponds to the new

cutoff value, rc;12:

Mean-square fluctuations. In Fig. 3(a), the temperature

factors predicted by theory and experiments are plotted for

HA. The overall agreement seems reasonable, as in previous

work with HA, where the residue masses were taken to be

uniform [32]. The incorporation of the different residue

masses in the elastic network model does not seem to affect

the ms fluctuations, resulting in almost identical behavior as

seen in the previous study [32].

Fig. 3(b)–(e) compares the temperature factors from

mixed coarse-grained calculations with those of uniform

coarse-graining with n ¼ 1: HA is a homo-trimer with each

monomer consisting of two chains: HA1 and HA2. In our

first trial, one of the HA1 chains is modeled at relatively

higher resolution, i.e. it contains all 328 residues as the

nodes, whereas the remaining five chains are modeled at

lower resolution, either n ¼ 5 or 20. Fig. 3(b) shows the

results for the whole protein at n ¼ 1–5 level. There is a

slight level difference between the average ms fluctuations

of the high and low-resolution parts of the model,

specifically the n ¼ 1 portion exhibits lower ms fluctuations

than the experimental values, whereas the reverse behavior

is observed for the rest. This may result from the

Fig. 2. Density of vibrational frequencies, gðvÞ; based on uniform coarse-graining for: (a) HA and GAL with n ¼ 1; (b) HA with different segment lengths, (c)

GAL with different segment lengths, and (d) HA and GAL at n ¼ 1; showing a log–log plot of cumulative distributions, GðvÞ; at the low frequency end of the

spectrum.

Table 1

Correlation coefficients for mixed and uniform coarse-graining results

Protein/monomer Segment lengths n B-factors Slowest mode

HA1 1, 5 0.92 0.96

HA1 1, 20 0.40 (0.60a) 0.77

HA1 onlyb 1 0.26 0.47

HA2 1, 5 0.80 0.94

HA2 1, 20 0.61 0.95

HA2 onlyb 1 0.03 0.04

GAL 2, 10 0.92 0.97

GAL 2, 20 0.77 0.91

GAL 2, 40 0.74 0.88

GAL onlyb 2 0.16 (0.77a) 0.60

The uniform coarse-graining results are for n ¼ 1 (HA) and n ¼ 2

(GAL).
a A few high peaks as in Fig. 3(d) are removed to improve the

correlations.
b Only a single chain (HA1 or HA2) or a single monomer from GAL is

modeled by neglecting the remaining chains.
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assumptions considered in the formulation of Eq. (15), and

the corresponding force constants extracted. However, if we

concentrate on the high-resolution region separately and

scale its fluctuations so as to match the average value of the

uniform coarse-graining, excellent agreement is observed in

Fig. 3(c) for n ¼ 1; 5 level. Fig. 3(d) shows similar results

for the case n ¼ 1; 20: Finally, one of the HA2 chains (175

residues) is modeled at high resolution and Fig. 3(e) shows

the case n ¼ 1; 20:

Table 1 (third column) gives the linear correlation

coefficients between several mixed coarse-graining calcu-

lations and uniform coarse-graining results for HA ðn ¼ 1Þ;

and GAL ðn ¼ 2Þ: In this table, the correlation coefficients

are also given for the case where only the high-resolution

chain is modeled without incorporating rest of the protein at

lower resolution. The correlation coefficients are signifi-

cantly lower if the remaining chains are not considered, the

worst case being HA2. This indicates the utility of the

mixed-coarse graining procedure, which can be applied to

supra-molecular structures, and demonstrated that in order

Fig. 3. Dependence of B-factors on residue index (a) original HA results with n ¼ 1 in comparison with experimental B-factors, (b) HA at n ¼ 1; 5 level (HA1

at higher resolution), (c) HA at n ¼ 1; 5 level showing only HA1 residues, (d) HA at n ¼ 1; 20 level showing only HA1 residues, (e) HA at n ¼ 1; 20 level

showing only the HA2 residues that are modeled at higher resolution.
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to be effective, the entire structure needs to be included in

the calculation.

Slow modes. The low-frequency, collective modes of

motion are especially significant, since they are the ones

most often related to protein function. Therefore, in this

section we will focus on the determination of the slowest

modes by the mixed coarse-graining approach. Fig. 4(a) and

(b) show the residue fluctuations resulting from only the

first, lowest frequency mode for HA2 ðn ¼ 1; 20Þ and GAL

ðn ¼ 2; 40Þ; respectively. Correlation coefficients for the

slowest mode fluctuations are also given in Table 1 (last

column), which are in general higher than the correlation of

all modes (B-factors).

Alternative conformations of the molecule originating in

the action of slowest modes need to be investigated in order

to assure that the collective deformations are similar to the

original motions. Fig. 5(a) shows the structure of HA ðn ¼

1Þ with HA1 (left panel) and HA2 (right panel) chains

colored in black. The first mode of motion, which is a

twisting of the whole molecule along its cylindrical axis, is

shown in Fig. 5(b). The left panel shows original

calculations ðn ¼ 1Þ; whereas the right panel is for the

mixed coarse-grained model ðn ¼ 1; 5Þ with HA1 modeled

at high resolution. In both panels, HA1 is colored black and

its deformations are similar. Similarly, Fig. 5(c) indicates

the bending deformation in the second mode with the HA2

chain modeled at higher resolution in a mixed system of

n ¼ 1; 5 (right panel), in comparison to uniform coarse-

graining. The implications of these slow modes on the

structure–function relationships of HA related to binding

and membrane fusion have been discussed in detail by Isin

et al. [32].

Fig. 4. Comparison of the mean square fluctuations due to slowest mode for

(a) HA2 at n ¼ 1 and 1,20 level, (b) first monomer of GAL at n ¼ 2; 40

level of mixed-coarse graining.

Fig. 5. Mixed coarse grained representations of HA: (a) The undeformed,

native structure with HA1 (left) and HA2 (right) colored in black, (b) First

mode: global twisting around the longitudinal axis. Uniform structure

(n ¼ 1; left), and mixed coarse-grained structure with high resolution HA1

(n ¼ 1; 5; right), (c) second mode: bending motion of the whole molecule.

Uniform structure (n ¼ 1; left), and mixed coarse-grained structure with

high resolution HA2 (n ¼ 1; 5; right).
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The dominant correlated deformations in the first

mode of GAL are compared in Fig. 6. Fig. 6(a) exhibits

the side view of the protein in the native state (one

monomer colored black). The alternative deformations

from uniform coarse-graining ðn ¼ 1Þ; which are shown

in Fig. 6(b), indicate a bending of the whole molecule along

its activating interface, as also indicated previously [18].

Similar deformations are obtained for mixed coarse-

graining ðn ¼ 2; 40Þ in Fig. 6(c).

Frequency distribution. Fig. 7 compares the cumulative

frequency distributions, GðvÞ; from mixed coarse-graining

calculations for HA ðn ¼ 1; 20Þ and GAL ðn ¼ 2; 40Þ: The

behavior including 70 slowest modes is shown since the low

frequency range is important for our purposes. The straight

line with a slope of 2.2 is drawn through the data points of

uniform coarse-graining calculations at n ¼ 1; i.e. the same

line in Fig. 2(d). The slopes in mixed coarse-graining

calculations fall in the range of k ø 2:2–2:7 for GðvÞ , vk:

These distributions seem reasonable considering the

extreme levels of coarse-graining employed.

4. Conclusions

Normal mode analysis is an established technique to

study the fluctuation dynamics of proteins around their

native conformations. Collective deformations or domain

motions of large proteins can be effectively determined by

NMA using coarse-grained potentials [6,7,33]. Lately, it has

been shown that extreme levels of coarse-graining and low-

resolution protein structures from EM yield satisfactory

results in terms of collective motions, which permits the

application of the elastic network model to extremely large

proteins [17–20]. Based on these accomplishments, we

have aimed here at introducing a mixed coarse-graining

approach in the elastic network model, where different parts

of the protein structure are represented at lower or higher

resolutions. This approach enables us to focus on certain

regions of the structure that are of interest without

neglecting rest of the structure. As a result, a reduced

number of nodes can be retained in NMA in more efficient

computations and still obtain meaningfully similar results to

those obtained from more detailed computations. Here we

performed our computations with two quite large proteins,

namely hemagglutinin and b-galactosidase. It is also

Fig. 6. Mixed coarse grained representations of the structure of GAL: (a)

undeformed, native structure with one monomer colored in black, (b) first

mode: bending along the activating interface of the protein for all residue

system. Uniform coarse-graining with n ¼ 1; (c) first mode for mixed

coarse-graining at n ¼ 2; 40 level.

Fig. 7. Cumulative fraction of modes, GðvÞ; up to frequency v for mixed

coarse-grained systems at the low frequency end of the spectrum

(logarithmic plot). The solid line, of slope 2.2, is based on the uniform

coarse-graining results with n ¼ 1: The slopes for the coarse-grained

models exhibit relatively small deviations from the line shown.
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possible to treat significantly larger supramolecular assem-

blages with this methodology.

The relatively large proteins (HA and GAL) exhibit

similar frequency distributions, specifically in the low

frequency region. These results are in conformity with

previous NMA results on much smaller proteins, which

have indicated universal behavior in terms of their

frequency distributions [31]. We have shown that the

cumulative density of modes up to frequency v; scales as

GðvÞ ¼ vk with k , 2:2: This exponent is also very similar

to the atomistic results on smaller proteins [31].

The relationship between the cutoff radius to be selected

and the coarse-grained segment length has been reported in

our previous study [18]. Here, we demonstrate how the

effective force constant between coarse-grained nodes

changes as a function of the cutoff radius, with similar

trends found for the two proteins. Based on these

relationships, our mixed coarse-graining results indicate

that the temperature factors and the slow modes of motion

can be successfully reproduced, and that they exhibit high

correlations with the original uniform, but less coarsely

grained results. With this methodology, it is possible to

reduce the computational time by 2–4 orders of magnitude

depending on the level of mixed coarse-graining applied.

Thus, it becomes feasible to apply this methodology

routinely to supramolecular assemblages such as the

ribosome or larger. Furthermore, it is also possible to

model certain parts such as the interfaces or active sites in

atomistic detail by adjusting the parameters and using the

same mixed coarse-graining methodology (results not

shown here). Thus, it would be possible to observe the

structural changes at specific regions of the large proteins

resulting from the deformations in the slow modes, which

would not be possible by fully atomistic approaches.
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